четвер, 3 листопада 2011 р.

Электризация тел. Строение атома











                          Экзаменационный реферат
                                       по физике.

            Тема: ”Электризация тел. Строение атома.”





План

1. Введение.
2. Электризация тел.
3. Два рода зарядов.  Взаимодействие заряженных тел.
4. Электроскоп. Проводники и непроводники электричества.
5. Делимость электрического заряда. Электрон.

6. Ядерная модель строения атома

7.  Состав атомных ядер

8.Изотопы

9. Электронные оболочки атомов. Теория Бора.

10. Ядерные силы
11. Деление ядер урана
12. Атомные электростанции.
13. Заключение


1. Введение.

Слова “электричество” и “электрический ток” знакомы сейчас каждому человеку. В наших домах, на транспорте, на заводах и фабриках, в сельском хозяйстве используют электрический ток. Но чтобы ответить на вопрос, что представляет собой электрический ток, надо ознакомиться с большим кругом явления, который называют электрическими.
Рассмотрим сначала происхождение термина “электричества”.
Если потереть стеклянную палочку о лист бумаги и поднести её к руке, то можно услышать легкий треск, а в темноте и увидеть небольшие искорки. Кроме того, палочка приобретает способность притягивать к себе листочки бумаги, пушинки, тонкие струйки воды. Подобные явления наблюдаются, например, и при расчесывание сухих волос. В этом можно убедиться наэлектризовав пластмассовую расческу ( или ручку) и поднеся её потом к тонкой струйке воды. Если вы снимаете свитер, сдергиваете с постели одеяло или идете по ковру вы превращаетесь в слабое подобие Зевса-громовержца. Проскакивают крошечные искры, слышаться потрескивание воздуха. В очень сухой день на толстом ковре вы представляете опасность для себя и для своих друзей. Разделение электрических зарядов может привести к драматическим эффектам в природе. Почти любое вещество, которое скользит или проносится мимо других объектов, захватывает или теряет электроны. Когда это происходит с поднимающимися или падающими каплями воды в облаках, одна часть облака может оказаться отрицательно заряженной по отношению к другой части или земле. Когда концентрация зарядов в некоторой области становиться достаточно высокой, часть зарядов уноситься, образуя проводящую дорожку к земле или к другой части облака. Такой пробой происходит быстро, поднимая температуру проводящей дорожки до значения, когда наблюдается свечения, и, создавая область высокого давления, которая, распространяясь во все стороны, вызывает гром.
Все эти явления называются  явлениями электростатики.
Меня заинтересовали эти явления. И я решил глубже изучить этот вопрос. Посетив библиотеку, я собрал всю имеющуюся литературу по данной теме. Прочитав книги, я проверил полученные знания на практике, проделав несколько несложных опытов с обычными воздушными шарами.
Надув небольшой воздушный шар, у меня получился превосходный источник отрицательных электрических зарядов. Потерев шар о свои волосы, я обнаружил, что шар стал прилипать к телу, о которое я его потер, и буквально ко всему остальному, включая ближайшую стену. В этом случае, как и во многих похожих опытах, совершенно необязательно сильно тереть предметы друг о друга. Разделение электрических зарядов происходит и в результате контакта между двумя различными материалами. При трении двух тел друг о друга просто увеличивается область контакта.
И понял, что электризация тел тесно связана со строением атомов. Начав подробно изучать строение атома, я понял, что атом играет важнейшую роль  в жизни человека.

2. Электризация тел.

Эти явления были обнаружены еще в глубокой древности. Древнегреческие ученые заметили, что янтарь (окаменевшая смола хвойных деревьев, которые росли на Земле много сотен тысяч лет назад) при натирании его шерстью начинает притягивать к себе различные тела. По-гречески янтарь – электрон, отсюда произошло название “электричество”.
 Про тело, которое после натирания притягивает к себе  другие тела, говорят, что оно  наэлектризовано  или что ему сообщен электрический заряд.
  Электризоваться могут тела, сделанные из разных веществ. Легко наэлектризовать натиранием о шерсть палочки из резины, серы, эбонита, пластмассы, капрона.
Электризация тел происходит при соприкосновении и последующем разделении тел. Трут тела друг о друга лишь для того, чтобы увеличить площадь их соприкосновения.
В электризации всегда участвуют два тела: в рассмотренных выше опытах стеклянная палочка соприкасалась с листом бумаги, кусочек янтаря – с мехом или шерстью, палочка из плексигласа – с шелком. При этом электризуются оба тела. Например, при соприкосновении стеклянной палочки и куска резины электризуются и стекло, и резина. Резина, как и стекло начинает притягивать к себе легкие тела.
Электрический заряд можно передать от одного тела к другому. Для этого нужно коснуться наэлектризованным телом другого тела, и тогда часть электрического заряда перейдет на него. Чтобы убедиться, что и второе тело наэлектризовано, нужно поднести к нему мелкие листочки бумаги и посмотреть, будут ли они притягиваться.



 Делимость электрического заряда. Электрон.

Зарядим металлический шар, прикрепленный к стержню электроскопа (рис. №4а). Соединим этот шар с металлическим проводником А, держа его за ручку В, изготовленную из диэлектрика, с другим точно таким же, но незаряженным шаром, находящемся на втором электроскопе. Половина заряда перейдет с первого шара на второй  (рис. №4б). Значит, первоначальный заряд разрядился на две равные части.
 Теперь разъединим шары и коснемся второго шара рукой. От этого он потеряет заряд – разрядиться. Присоединим его снова к первому шару, на котором осталась половина первоначального заряда. Оставшийся заряд снова разделиться на две равные части, и на первом шаре останется четвертая часть первоначального заряда.
Таким же образом можно получить одну восьмую, одну шестнадцатую часть заряда и т. д.
Таким образом, опыт показывает, что электрический заряд может иметь разное значение. Электрический заряд – физическая величина.
За единицу электрического заряда принят один кулон (обозначается 1 Кл). Единица названа так в честь французского физика Ш. Кулона.
В опыте изображенным на рисунке №4, показано, что электрический заряд можно разделить на части.
А существует ли придел деления заряда?
Чтобы ответить на этот вопрос, понадобилось выполнять более сложные и точные опыты, чем описанные выше, т. к. очень скоро оставшийся на шаре электроскопа заряд становиться таким малым, что обнаружить его при помощи электроскопа не удается.
Для деления заряда на очень маленькие порции нужно передавать его не шарам, а маленьким крупинкам металла или капелькам жидкости. Измеряя заряд, полученный на таких маленьких телах, установили, что можно получить порции заряда, в миллиарды миллиардов  раз меньше, чем в описанном опыте. Однако во всех опытах разделить заряд дальше определенного значения не удавалось.
Это позволило предположить, что электрический заряд имеет придел делимости или, точнее, что существуют заряженные частица, которая имеет самый малый заряд, далее уже не делимый.
Чтобы доказать, что существует придел деления электрического заряда, и установить, каков этот придел, ученые проводили специальные опыты. Например, советский ученый А. Ф. Иоффе поставил опыт, в котором электризовали мелкие пылинки цинка, видимые только под микроскопом. Заряд пылинок несколько раз меняли, и каждый раз измеряли, на сколько изменился заряд. Опыты показали, что все изменения заряда пылинки были в целое число раз (т. е. в 2, 3, 4, 5 и т. д.)больше некоторого определенного наименьшего заряда, т. е. заряд пылинки изменялся хотя и очень малыми, но целыми порциями. Так как заряд с пылинки уходит вместе с частицей вещества, то Иоффе сделал вывод, что в природе существует такая частица вещества, которая имеет самый маленький заряд, далее уже не делимый.
Эту частицу назвали электрон.
Значение заряда электрона впервые определил американский ученый Р. Милликен. В своих опытах, сходных с опытами А. Ф. Иоффе, он пользовался мелкими капельками масла.
Заряд электрона – отрицательный, равен он – 1,610 Кл (0,000 000 000 000 000 000 16 Кл). Электрический заряд – одно из основных свойств электрона. Этот заряд нельзя “снять” с электрона.
Масса электрона равна 9,110 кг, она в 3700 раз меньше массы молекулы водорода, наименьшей из всех молекул. Крылышко мухи имеет массу, примерно в 510 большую, чем масса электрона.


                                    Изотопы


Протонно-нейтронная теория позволила разрешить и еще одно противоречие, возникшее при формировании теории атома. Если признать, что ядра атомов элементов состоят из определенного числа нуклонов, то атомные массы всех элементов должны выражаться целыми числами. Для многих элементов это действительно так,  а незначительные отклонения от целых чисел можно объяснить недостаточной точностью измерения. Однако у некоторых элементов значения атомных масс так сильно отклонялись от целых чисел, что это уже нельзя объяснить  неточностью измерения  и другими случайными причинами. Например, атомная масса хлора (CL) равна 35,45. Установлено, что приблизительно три четверти существующих в природе атомов хлора имеют массу 35, а одна четверть - 37.  Таким образом, существующие в природе элементы состоят из смеси атомов, имеющих разные массы, но, очевидно, одинаковые химические свойства, т. е. существуют разновидности атомов одного элемента с разными и притом целочисленными массами. Ф. Астону удалось разделить такие смеси на составные части, которые были названы  изотопами (от греческих слов “изос” и “топос”, что означает “одинаковый” и “место” (здесь имеется в виду, что разные изотопы одного элемента занимают одно место в периодической системе)).  С точки зрения протонно-нейтронной теории, изотопами называются разновидности элементов, ядра атомов которых содержат различное число нейтронов, но одинаковое число протонов. Химическая природа элемента обусловлена числом протонов в атомном ядре, которому равно и число электронов в оболочке атома. Изменение же числа нейтронов (при неизменном числе протонов) не сказывается на химических свойствах атома.
Все это дает возможность сформулировать понятие химического элемента как вида атомов, характеризующихся определенным зарядом ядра. Среди изотопов различных элементов были найдены такие, которые содержат в ядре при разном числе протонов одинаковое общее число нуклонов, то есть атомы которых обладают одинаковой массой.  Такие изотопы были названы изобарами (от греческого слова “барос”, что означает “вес”). Различная химическая природа изобаров убедительно подтверждает то, что природа элемента обуславливается не массой его атома.
Для различных изотопов применяются названия и символы самих элементов с указанием массового числа, которое следует за названием элемента или обозначается в виде индекса вверху слева от символа, например : хлор - 35 или    Cl.
Различные изотопы отличаются друг от друга устойчивостью.  26  элементов имеют лишь по одному устойчивому изотопу - такие элементы называются моноизотопными,  (они характеризуются преимущественно нечетными атомными номерами), и атомные массы их приблизительно равны целым числам.  У 55 элементов имеется  по несколько  устойчивых изотопов - они называются полиизотопными (большое число изотопов характерно преимущественно для элементов с четными номерами). У остальных элементов известны только неустойчивые, радиоактивные изотопы. Это все тяжелые элементы, начиная с элемента №84 (полоний), а из относительно легких - №43 (технеций) и №61 (прометий).  Однако радиоактивные изотопы некоторых элементов относительно устойчивы (характеризуются большим периодом полураспада), и поэтому эти элементы, например торий, уран, встречаются в природе. В большинстве же радиоактивные изотопы получают искусственно, в том числе и многочисленные радиоактивные изотопы устойчивых элементов.
. 
10.Ядерные силы.

Гипотеза о том, что атомные ядра состоят из протонов и нейтронов подтверждалось многими экспериментальными фактами. Это свидетельствовало о справедливости потонно-нейтронной модели строения ядра.
Но возникал вопрос: почему ядра не распадаются на отдельные нуклоны под действием сил электростатического отталкивания между положительно заряженными протонами?
Расчёты показывают, что нуклоны не могут удерживаться вместе за счёт сил притяжения гравитационной или магнитной природы, поскольку эти силы существенно меньше электростатических.
В поисках ответа на вопрос об устойчивости атомных ядер учёные предположили, что между всеми нуклонами в ядрах действуют какие то особые силы притяжения, которые значительно превосходят электростатические силы отталкивания между протонами. Эти силы назвали ядерными.
Гипотеза о существовании ядерных сил оказалась правильной. Выяснилось также, что ядерные силы являются короткодействующими: на расстоянии 10-15  м они примерно в 100 раз больше сил электростатического взаимодействия, но уже на расстоянии 10-14  м они оказываются ничтожно малыми. Другими словами, ядерные силы действуют на расстояниях, сравнимых с размерами самих ядер.

.   


16. Список литературы

1. Перышкин А.В., Родина Н. А. Физика: Учеб. для 8 кл. сред. шк. – М.: Просвещение, 1989.
2. Браун Т., Лемей Г.Ю.  “Химия – в центре наук”, часть 1, М., 1983.
3. Суорц Кл.Э. Необыкновенная физика обыкновенных явлений: Пер. с англ. В 2-х т. Т. 2. – М., 1987.
4. Перышкин А.В., Гутник Е. М. Физика: Учеб. для 9 кл. сред. шк. – М.: Дрофа, 2001.
5. Нетрадиционные источники энергии. – М.: Знание, 1982.
6. Источники энергии. Факты, проблемы, решения. – М.:Наука и техника, 1997.

Немає коментарів:

Дописати коментар